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a b s t r a c t

Seed oil from lesquerella (Lesquerella fendleri (Gray) Wats.) is currently being developed as a biorenew-
able petroleum substitute, but several issues related to crop management and breeding must be resolved
before the crop will be commercially viable. Due particularly to the prominent yellow flowers exhibited
by lesquerella canopies, remote sensing may be a useful tool for monitoring and managing the crop. In this
study, we used a hand-held spectroradiometer to measure spectral reflectance over lesquerella canopies
in 512 narrow wavebands from 268 to 1095 nm over two growing seasons at Maricopa, Arizona. Biomass
samples were also regularly collected and processed to obtain aboveground dry weight, flower counts,
and silique counts. Partial least squares regression was used to develop predictive models for estimat-
ing the three lesquerella biophysical variables from canopy spectral reflectance. For model fitting and
model testing, the root mean squared prediction errors between measured and modeled aboveground

−1
artial least squares regression
iomass
lower
ilique
anagement

rizona

dry weight, flower counts, and silique counts were 2.1 and 2.3 Mg ha , 251 and 304 flowers, and 1018
and 1019 siliques, respectively. Analysis of partial least squares regression coefficients and loadings high-
lighted the most sensitive spectral wavebands for estimating each biophysical variable. For example, the
flower count model heavily emphasized the reflectance of yellow light at 583 nm, and contrasted that
with reflectance in the blue (483 nm) and at the red edge (721 nm). Because of the indeterminate nature
of lesquerella flowering patterns, remote sensing methods that monitor flowering progression may aid

lated

griculture
ilseed management decisions re

. Introduction

Lesquerella (Lesquerella fendleri (Gray) Wats.) has been studied
s a potential source of industrial seed oil since 1960 (Smith et al.,
961). High concentrations of hydroxylated fatty acids can be found

n the seeds of the lesquerella plant, and these compounds are use-
ul as an additive to improve the lubricity of petroleum-based diesel
uels (Geller and Goodrum, 2004; Moser et al., 2008). Due to envi-
onmental concerns about air quality, governmental regulations
urrently limit the sulfur content of commercial petroleum diesel
uels. Ultra-low sulfur diesel fuels have been developed to address
his concern; however, the decreased lubricity of these fuels can
educe the lifespan of diesel engines and their fuel injection sys-
ems. Seed oil from lesquerella plants may provide a renewable and

nvironmentally sensitive solution to this problem. Hydroxylated
atty acids from lesquerella seed also has use as a petroleum substi-
ute in the production of many other products, including greases,
ubricants, cosmetics, paints, inks, and coatings.

∗ Corresponding author. Tel.: +1 520 316 6375; fax: +1 520 316 6330.
E-mail address: kelly.thorp@ars.usda.gov (K.R. Thorp).

926-6690/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.indcrop.2010.10.003
to the timing of irrigations, desiccant application, and crop harvest.
Published by Elsevier B.V.

Development of robust cultivars and reliable agronomic
practices are required before lesquerella can become a viable com-
mercial crop. Many field investigations have been conducted to
address crop management issues, such as optimum sowing date
and density (Garcia et al., 2007; Nelson et al., 1996), fertilization
requirements (Nelson et al., 1996, 1999), irrigation water manage-
ment (Hunsaker et al., 1998; Puppala et al., 2005), and herbicide
tolerance (Roseberg, 1996). To define regions for optimum pro-
duction, Dierig et al. (2006) evaluated crop growth, development,
and yield at four Arizona sites having different elevations and tem-
perature regimes. Lesquerella is native to the southwestern United
States and northern Mexico and is thus naturally adapted to arid
environments. Efforts are currently focused on domesticating and
commercializing the crop for production as a winter annual in this
region.

Remote sensing has been widely investigated as a tool to
characterize various aspects of crop production, including crop

species identification (Jakubauskas et al., 2002), crop yield (Idso
et al., 1977), crop water stress (Jackson et al., 1981), nitrogen
stress (Blackmer et al., 1996), evapotranspiration (Hunsaker et al.,
2005), and plant stand density (Thorp et al., 2008). More recently,
remote sensing has been proposed as a viable tool to aid breeding

dx.doi.org/10.1016/j.indcrop.2010.10.003
http://www.sciencedirect.com/science/journal/09266690
http://www.elsevier.com/locate/indcrop
mailto:kelly.thorp@ars.usda.gov
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Table 1
Summary of the 2007–2008 and 2008–2009 lesquerella experiments.

Planting 1 Planting 2 Planting 3

2007–2008 Experiment
Planting date 9/28/2007 2/15/2008 3/10/2008
Replications 3 3 3
Sample areas per plot 20 12 0
Biomass samples per plot 16 7 0
RS data collection dates 19 11 0

2008–2009 Experiment
Planting date 10/6/2008 1/8/2009 2/6/2009
Replications 3 3 3
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Sample areas per plot 12 8 8
Biomass samples per plot 8 4 3
RS data collection dates 11 7 5

fforts through its implementation on high-throughput phenotyp-
ng platforms (Montes et al., 2007). The latter application may be
articularly important for speeding the development of new crops
uch as lesquerella.

Very few reports of remote sensing studies over lesquerella
anopies exist in literature. However, the indeterminate and
ibrant yellow flowering patterns of lesquerella canopies make the
rop spectrally intriguing. For example, Adamsen et al. (2000) used
digital camera to photograph lesquerella canopies and analyzed

he images to estimate flower counts. Additionally, remote sensing
tudies over oilseed rape (Brassica napus L.) canopies, which also
roduce vibrant yellow flowers at anthesis, have shown that spec-
ral indices can be sensitive to flowering time (Mogensen et al.,
996). Since the yield of many agricultural crops is sensitive to
lant stress at anthesis and during grain fill, a tool to identify
he temporal flowering patterns of lesquerella canopies may aid
rop management decisions. Similarly, a tool for rapid estimation
f flower counts and other biophysical properties may facilitate
reeding efforts for lesquerella. To investigate the use of remote
ensing as a tool for lesquerella management and breeding, our
bjectives were to (1) collect hyperspectral remote sensing data of
esquerella canopies in a field setting with different planting dates
nd (2) use partial least squares regression (PLSR) to relate hyper-
pectral information to field measurements of several biophysical
roperties of the lesquerella canopy, including total aboveground
ry weight, flower count, and silique count. PLSR methods have
een used in previous field studies to relate hyperspectral canopy
eflectance data to leaf nitrogen concentration in cotton (Gossypium
irsutum L.) (Fridgen and Varco, 2004), plant nitrogen concentra-
ion in rice (Oryza sativa L.) (Bajwa, 2006), and yield in citrus (Citrus
nshiu Marc.) (Ye et al., 2009).

. Materials and methods

.1. Field experiments

Lesquerella was grown at the University of Arizona’s Maricopa
gricultural Center (MAC) near Maricopa, Arizona (33.067547◦ N,
11.97146◦ W) over the winters of 2007–2008 and 2008–2009.
he soil type at the site was a Casa Grande sandy loam, classi-
ed as fine-loamy, mixed, hyperthermic, Typic Natrargids. In both
rowing seasons, the field layout consisted of nine experimen-
al plots, each 20 × 180 m and hydrologically isolated with border
ikes. Three planting date treatments were replicated three times
ver the nine plots (Table 1). In the 2007–2008 experiment, the

rst and second planting dates were September 28 and February
5, respectively. The third treatment was planted in March, but
oor stand density prevented any useful data from being collected
rom this treatment. In the 2008–2009 experiment, planting dates
ere October 6, January 8, and February 6. All plots were broadcast
d Products 33 (2011) 524–531 525

planted at a rate of 12 kg ha−1 using a Brillion planter with a roller
ring. Plots were flood irrigated by siphoning water from a canal
along the southern edge of the field. After crop emergence, multi-
ple locations within each plot were randomly selected and flagged
for biomass sampling, flower counting, silique counting, and recur-
rent remote sensing data collection. The marked areas were each
0.125 m2. In 2007–2008, 20 sample areas were marked for the first
planting while 12 areas were marked for the second planting. In
2008–2009, the total number of marked areas was twelve, eight,
and eight for the first, second, and third plantings, respectively
(Table 1).

2.2. Field measurements

Ground-based radiometric measurements were collected at
each of the 0.125 m2 sampling locations from emergence until
biomass was destructively sampled at that location. Additional
radiometric measurements (approximately 24 per plot) were col-
lected while walking along a 180 m linear transect on the western
edge of each plot. Spectral data collection occurred on a weekly
basis during the 2007–2008 experiment and at a two-week inter-
val during the 2008–2009 experiment. The total number of remote
sensing data collection dates for each treatment is given in Table 1.

A hand-held field spectroradiometer (GER 1500, Spectra Vista
Corp., Poughkeepsie, New York) was used to collect uncalibrated
digital numbers related to light radiance from the crop canopy. The
instrument collected information in 512 narrow wavebands from
268 to 1095 nm with bandwidth ranging from 1.5 to 2.1 nm. The
instrument was equipped with an 18◦ field-of-view fiber optic. A
wand constructed from PVC tubing was used to position the fiber
optic at a nadir view angle over each target. For scans over the
biomass sampling areas, the fiber optic was positioned approx-
imately 1.0 m above the soil surface. For scans along the linear
transects, data was collected approximately 2.0 m above the soil
surface. Radiometric data collection consistently occurred in the
morning around the time of a 57◦ solar zenith angle. Frequent
radiometric observations of a calibrated, 0.6 m2, 99% Spectralon
panel (Labsphere, Inc., North Sutton, New Hampshire) were used to
characterize solar irradiance throughout the data collection period.
Canopy reflectance factors in each waveband were computed as
the ratio of the canopy radiance over the corresponding time-
interpolated value for solar irradiance. Reflectance factors from
three radiometric measurements over each biomass sampling area
were averaged to estimate the spectral reflectance of the sample
area on each measurement date. Further data analysis was based
on the spectra from 356 to 945 nm only, since the instrument’s
signal to noise ratio was highest at these wavelengths.

Biomass was destructively sampled at one of the 0.125 m2 sam-
pling locations in each plot on a weekly basis during the 2007–2008
experiment and every two weeks during the 2008–2009 experi-
ment. In 2008, the first planting date treatment was sampled 16
times per plot from January 15 through May 21, and the second
planting date treatment was sampled seven times per plot from
May 1 to June 19. In 2009, the first treatment was sampled eight
times per plot from February 3 to May 12, and the second treatment
was sampled four times per plot from April 30 to June 11. The third
treatment in 2009 was sampled three times per plot from May 13 to
June 12. Typically, we overestimated the number of sampling areas
needed to document lesquerella growth and development over the
growing season, and some of the predefined sample areas remained

unsampled at crop maturity (Table 1). To collect the samples, square
frames of white PVC tubing were constructed to delineate each
0.125 m2 sample area. Samples were typically collected in the early
morning hours. Plant material was then immediately processed in
the laboratory to obtain aboveground dry weight, flower count,
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ilique count, and several other biophysical properties of the les-
uerella canopy.

.3. Statistical analysis

PLSR was used to assess the relationship between the measured
rop biophysical properties and the canopy spectral reflectance
ata. PLSR is an extension of the standard multiple linear regression
MLR) procedure, the latter of which is defined by:

= Xˇ + ε (1)

here Y is an n × 1 vector of responses (crop biophysical measure-
ents), X is an n-observation by p-variable matrix of predictors

hyperspectral reflectance measurements in p wavebands), ˇ is a
× 1 vector of regression coefficients, and ε is an n × 1 vector of
rror terms with each element following an independent, normal
istribution. The ordinary least squares estimate of ˇ is given by:

ˆ = (X′X)−1X′Y (2)

he MLR approach is commonly used to develop linear statistical
odels for predicting Y from X. However, when the number of pre-

ictor variables (p) is greater than the number of observations (n)
r when multicollinearity exists among the predictor variables, the
atrix X′X is often singular and unable to be inverted, as required

y Eq. (2). Since these conditions are certainly likely for the highly
orrelated, narrow-band reflectance data from the field spectrora-
iometer used in these experiments, an alternative approach such
s PLSR was required.

The first step in PLSR is to center X and Y by subtracting from
ach data value its respective column mean, giving X0 and Y0. PLSR
hen addresses the singularity problem by decomposing X0 into a
et of A orthogonal scores (which are weighted sums of the predic-
or variables in X0) with corresponding scores for Y0 and loadings
or X0 and Y0:

X-scores: T = [t1, . . ., tA]
X-loadings: P = [p1, . . ., pA]
X-weights: R = [r1, . . ., rA]
Y-scores: U = [u1, . . ., uA]
Y-loadings: Q = [q1, . . ., qA]

The X-scores, ta, are determined successively by maximizing
heir covariance with the corresponding Y-scores, ua, for a ={1, 2,
. ., A}. This is accomplished by first computing the singular value
ecomposition of the cross product matrix S0 = X′

0Y0, thereby
ncorporating information on the variance of both X0 and Y0 and
he covariance between them. Scores and loadings are then succes-
ively computed according to:

a = X0ra, a = 1, 2, . . . , A (3)

a = X′
0ta, a = 1, 2, . . . , A (4)

a = Y′
0ta, a = 1, 2, . . . , A (5)

a = Y0qa, a = 1, 2, . . . , A (6)

here ra is the first left singular vector of successively deflated
ross product matrices, Sa−1. Each succeeding Sa is determined from
ts predecessor Sa−1 by projecting Sa−1 onto the column space of
he X-loadings, Pa, thereby removing the information previously
xtracted. The solution to Eqs. (3)–(6) is constrained by several

onditions, including:

maximization of covariance: u′
ata = maximum

normalization of scores ta: t ′
ata = 1

orthogonality of all t scores: t ′
bta = 0 for a > b
d Products 33 (2011) 524–531

It can be shown that the partial least squares regression coeffi-
cients, ˇPLS, are estimated as:

ˆ̌ PLS = RQ′ (7)

where R and Q are the X-weights and Y-loadings as defined pre-
viously. In an equation similar to (1), stable predictions of Y0 can
then be obtained in spite of the multicollinearity in X0 according
to:

Y0 = X0ˇPLS + ε (8)

To validate or apply the model for new datasets, one simply
subtracts from the validation dataset the column means of the
calibration dataset used to fit the model.

There are many variations of PLSR methods and their respec-
tive computational implementations. The preceding discussion
describes the PLSR method of de Jong (1993), commonly known
as SIMPLS. We have implemented this method using the ‘pls’ pack-
age (Mevik and Wehrens, 2007) within the R Project for Statistical
Computing (http://www.r-project.org/). The ‘pls’ package includes
several useful features for fitting and validating PLSR models. For
example, choosing an appropriate number of factors (A from above)
is an important decision during modeling fitting. Cross validation
is typically used for this purpose, and the ‘pls’ package is fully
equipped to utilize this procedure during model fitting. We used
leave-one-out cross validation to select the appropriate number of
factors to be included in each PLSR model.

Three PLSR models were developed in this study, one each
for predicting aboveground dry weight, flower count, and silique
count. Since the lesquerella crop was sampled more frequently in
2007–2008, we used data from this season to build the models,
and leave-one-out cross validation on the 2007–2008 dataset was
implemented to select the appropriate number of factors. Data from
the 2008–2009 season were then used to independently test each
PLSR model. To build and test the PLSR models, we only included
the spectral information from the measurement date that imme-
diately preceded biomass sampling at each location. Originally, we
attempted to build separate PLSR models for each planting date
treatment. However, this lowered the sample number used for
model building, and the resulting predictions from these models
were often poor. Therefore, the three PLSR models in this study
were built from a combined dataset from all the treatments in the
2007–2008 growing season. Data were included in the analysis only
if the biophysical measurement was greater than zero. Mainly, this
prevented early season changes in reflectance from affecting the
development of PLSR models for reproductive characteristics, such
as flower count and silique count. Interpretation of each PLSR model
was accomplished by analysis of the X-loadings, pa, for each fac-
tor in the model and by analysis of the estimates of the regression
coefficients, ˆ̌ PLS.

2.4. Application

The spectral reflectance data collected along the 180 m tran-
sects were used to demonstrate the ability of the PLSR models to
temporally monitor lesquerella growth and development for the
three planting dates in each experiment. Each of the evaluated PLSR
models was applied to estimate aboveground dry weight, flower
count, and silique count at each location along the transect on
each measurement date. Estimates were then averaged according

to the measurement date and planting date treatment to gener-
ate time-series plots of each crop biophysical variable. These plots
demonstrated the ability of the remote sensing approach to tem-
porally monitor lesquerella growth and development over each
growing season.

http://www.r-project.org/
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ig. 1. Scree plots showing the root mean squared error of cross validation (RMSEC
ower count, and (c) silique count from the spectral reflectance of the lesquerella c

. Results and discussion

.1. Model fitting

Scree plots demonstrated the performance of each PLSR model
s additional PLS factors were included in the fit (Fig. 1). These
lots were used to select the number of factors (A) needed to build
he most effective PLSR model for each biophysical property. Selec-
ion of the appropriate number of factors is somewhat subjective,
hich is perhaps a weakness of PLSR methods. We have made our

elections roughly at the first local minimum of each scree plot,
here the addition of another factor did not substantially improve
odel predictions of the biophysical property. Using this criterion,

LSR models for aboveground dry weight, flower count, and silique
ount were developed using the first four, three, and five PLS factors,
espectively.

Results of the model fitting procedure using the 2007–2008
xperimental data demonstrated a moderate relationship between
he crop canopy spectral reflectance data and the three crop bio-
hysical properties (Fig. 2). The fitted PLSR model for aboveground
ry weight performed with a 2.1 Mg ha−1 root mean squared error
f prediction (RMSEP). Flower counts were estimated with a RMSEP
f 251 flowers, and silique counts were estimated with a RMSEP
f 1018 siliques. Modeling results demonstrated moderate trends
n the relationship between canopy spectral reflectance and the

rop biophysical variables, but the method may not be suitable
f very precise estimates of these quantities are needed. Some of
he error between modeled and measured values is likely due to
he time difference between remote sensing measurements and
iomass samples, which could be up to several days in length. We

ig. 2. Modeled versus measured (a) aboveground dry weight, (b) flower count, and (c)
iophysical variable to canopy spectral reflectance for the 2007–2008 lesquerella experim
 of Factors Number of Factors

en using partial least squares regression to predict (a) aboveground dry weight, (b)
in the 2007–2008 growing season.

took great care to coordinate the remote sensing measurements
and biomass samples spatially, but improved coordination in the
timing of remote sensing measurements and biomass samples is
warranted for future studies.

3.2. Model testing

Independent model testing using the 2008–2009 experimental
data gave similar results regarding the ability of the PLSR mod-
els to predict aboveground dry weight, flower counts, and silique
counts from canopy spectral reflectance (Fig. 3). For aboveground
dry weight, the RMSEP between modeled and measured values was
2.3 Mg ha−1. Also, flower counts and silique counts were estimated
with RMSEPs of 304 flowers and 1019 siliques, respectively. These
error values were all slightly higher than that obtained during the
model fitting phase. However, they were quite similar in magni-
tude, indicating that the models were reasonably predicting the
three biophysical variables for this independent dataset.

3.3. Model interpretation

According to Eq. (4), the set of X-loadings, P, provide the vec-
tors that relate the X-scores, T, back to the original mean-centered
reflectance data, X0. As such, the X-loadings (Fig. 4) can be used
to understand the relative contribution of each spectral wave-

band to the corresponding X-scores. For aboveground dry weight,
the X-loadings demonstrated that reflectance in the near-infrared
(NIR) region from 750 to 900 nm contributed quite strongly to
the X-scores of the first factor, while reflectance in the green
region around 550 nm provided an additional contribution. Positive

silique count when fitting partial least squares regression models to relate each
ent.
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ig. 3. Modeled versus measured (a) aboveground dry weight, (b) flower count, an
sing the 2007–2008 experimental data, against the data collected during the 2008

-loading values in these regions indicated that the X-scores of
he first factor should increase with increasing reflectance of green
nd NIR radiation. It is widely known that NIR radiation is read-
ly scattered from healthy plant leaves and that vegetation reflects
reen light more strongly than other visible light (Knipling, 1970).
hus, the X-scores from the first factor were directly related to the
ncreases in green and NIR reflectance that would be expected with
ncreases in biomass as the season progresses. The X-loading values
or the second factor were strongly negative in the red region from
00 to 700 nm, which relates to absorption of red light by chloro-
hyll in plant leaves. Negative X-loading values in the red region

ndicated that the X-scores of the second factor should increase
s red reflectance decreases with increasing biomass. Other fac-
ors of the PLSR model for aboveground dry weight contrasted the
eflectance in several regions where the curvature of the canopy
pectra was quite pronounced, such as the green peak at 550 nm
nd the wavebands at 700 and 750 nm which straddle the red edge
Horler et al., 1983). The purpose of these factors was likely to iden-
ify subtle reflectance differences in these regions of the spectrum
here vegetative reflectance changes rapidly with wavelength.

Similar to the PLSR model for dry weight, the first factor of the
LSR model for flower count focused on the positive correlation
f green and NIR reflectance with increasing vegetative biomass.
hus, the primary purpose of the first factor was to characterize
he general vegetative spectral signal in the data. The second fac-
or of the flower count model more directly identified the aspects

f the spectral signal that were related to flowering. With posi-
ive X-loading values that peaked around 600 nm, the X-scores of
he second factor should increase with increasing reflectance of
isible yellow light from the canopy, which is directly related to
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Fig. 4. The X-loading vectors of the fitted partial least squares regression mode
silique count when testing the partial least squares regression models, developed
lesquerella experiment.

the increase in the number of yellow flowers present. The third
factor of the PLSR model for flower counts is similar to the sec-
ond factor in the model for dry weight, which characterizes the
decrease in red reflectance due to increases in chlorophyll. Since
lesquerella exhibits indeterminate flowering patterns, increases in
plant biomass are expected to occur concurrently with increases
in flower number. Thus, the third component was likely charac-
terizing chlorophyll in the growing canopy rather than directly
monitoring the progression of flowering. The PLSR models know
nothing of the physiology of lesquerella growth and only aim to
relate variability in spectral responses to variability in the mea-
sured crop biophysical variables.

As opposed to dry weight and flower count, there is no direct
spectral explanation for the relationship between silique numbers
and canopy spectral reflectance. Likely, the remarkable perfor-
mance of the PLSR model for silique count (Figs. 2 and 3) is related
to other aspects of the crop canopy that can be directly corre-
lated to crop yield, such as dry weight and flower numbers. Similar
to the PLSR model for flower counts, the first factor of the PLSR
model for silique counts also focuses on the positive correlation
of green and NIR reflectance with increasing vegetative biomass,
while the second factor characterizes the aspects of the spectral
signal related to increases in yellow reflectance due to flowering in
the canopy. These first two factors are likely characterizing spec-
tral responses that are correlated with silique counts but not related
directly. The third factor in the PLSR model for silique counts high-

lights reduction in red reflectance, similar to the second factor
in the dry weight model and the third factor in the flower count
model. However, the magnitude of the third factor X-loadings are
somewhat smaller for the silique count model. This may be related
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Fig. 5. Regression coefficients of the fitted partial least squares regression

o the nutrient translocation processes that begin to occur as the
rop increases its silique load, because gradual increases in red
eflectance are expected as the plant leaves lose chlorophyll and
verall vegetative vigor before maturity. Positive X-loadings for the
ourth factor at 475 nm in the blue and at 700 nm in the far red may
lso be characterizing declines in canopy chlorophyll content that
ccompany the increase in silique load as the crop matures. The X-
oadings may indicate a non-causal explanation for the relationship
etween spectral reflectance and silique number. Nonetheless, the
LSR model was able to capture variability in silique counts based
n canopy spectral reflectance information.

The X-loading plots indicated how each spectral waveband con-
ributed to the X-scores of each PLSR model. On the other hand,
he regression coefficients, ˇPLS, for each PLSR model highlighted
he contribution of each spectral waveband to the overall predic-
ion of each biophysical variable (Fig. 5). In the PLSR model for dry
eight, local extrema in regression coefficients were found at 539,

99, 748, and 911 nm, which corresponds to visible green light, far
ed light at the foot of the red edge, NIR radiation at the shoulder
f the red edge, and middle NIR radiation. These four wavebands
ffectively characterized the shape of the vegetation spectral signal
nd were thus the most important wavelengths to consider in the
rediction of lesquerella dry weight. In the PLSR model for flower
ount, local extrema in the regression coefficients were found at
83, 583, 721, and 817 nm, corresponding to far blue light, near yel-

ow light, the red edge inflection band, and the middle NIR. These
avebands demonstrated the contrast necessary to distinguish yel-

ow light reflected from lesquerella flowers from light reflected in

ther regions of the visible spectrum. These wavebands for esti-
ating flower count were also quite different from those found for

ry weight, which demonstrates the strength of the PLSR method
or selecting wavebands most critically related to the biophysi-
al variable of interest. In the PLSR model for silique count, local

ig. 6. Average modeled (a) aboveground dry weight, (b) flower count, and (c) silique cou
ls for (a) aboveground dry weight, (b) flower count, and (c) silique count.

extrema in regression coefficients were found at 401, 708, 757, and
886 nm. Inclusion of a band in the near blue may help to estimate
changes in canopy chlorophyll content that may occur concur-
rently with increasing silique number. It is interesting to note that
the two bands for characterizing the red edge in the silique count
model are 9 nm greater than that found for the dry weight model.
These bands may also be more readily able to capture declining
chlorophyll levels in the plant canopy. The regression coefficient
results highlight the usefulness of expensive spectroradiometers
and PLSR approaches to select key wavebands for detection of crop
canopy biophysical responses. This information may be helpful in
the construction of more inexpensive multispectral sensors that
use information in several key wavebands for practical in-field esti-
mation of these responses.

3.4. Model application

Application of the PLSR models using the canopy reflectance
data collected along the 180 m transect in each plot demonstrated
the ability of the models to track lesquerella growth and develop-
ment for each of the planting date treatments. Of particular interest
is the ability of PLSR model for flower count to identify the doy
of year (DOY) or days after planting (DAP) that peak flowering
occurred. For the 2007–2008 experiment, the average peak flow-
ering date was April 24 (DOY 115; DAP 209) for the first planting,
while peak flowering was May 16 (DOY 137; DAP 91) for the second
planting (Fig. 6). Similarly for the 2008–2009 experiment, the aver-
age peak flowering date was April 20 (DOY 110; DAP 196) for the

first planting, and peak flowering for the second and third planting
dates both occurred on June 1 (DOY 152; DAP 144 and 115) (Fig. 7).
Because lesquerella flowering is indeterminate in nature, remote
sensing may be a useful tool to track flowering patterns and identify
when the crop begins to flower less vigorously. In this way, remote

nt using the transect reflectance data collected from February to July of 2008.
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ig. 7. Average modeled (a) aboveground dry weight, (b) flower count, and (c) siliq

ensing techniques may aid a grower’s decision to cut off irriga-
ion water in the late season or to apply desiccant in preparation
or crop harvest. For lesquerella crops in Arizona, these decisions
re particularly important, since the crop may likely be grown in
otation with cotton, and earlier lesquerella harvest dates would
llow more time to prepare the field for the cotton crop or allow
ore flexibility to add a different summer crop, such as sorghum,

nto the rotation scheme. Mature siliques have also been known to
asily shatter in heavy winds or rain, so quantification of optimum
arvest dates may help prevent yield loss due to adverse weather.

n addition to remote sensing estimates of flower count, the silique
ount estimates may also be useful for deciding the optimum time
o harvest lesquerella. Plots given in Figs. 6 and 7 also demonstrate
ow the remote sensing techniques may be useful for estimating
rop traits of interest to lesquerella breeders.

Estimates from the PLSR model for silique count demonstrate
ow remote sensing could be developed as a yield prediction tool

or lesquerella. For example, in the 2007–2008 growing season,
verage grain yields for the first and second plantings were 1689
nd 462 kg ha−1, respectively. Based on the difference in silique
ount predictions from remote sensing (Fig. 6c) in this growing
eason, this difference in final yield between the planting date
reatments could be reasonably expected.

. Conclusions

Partial least squares regression is a useful statistical tool for
nalyzing hyperspectral datasets and relating crop canopy spectra
o measured biophysical variables. Due to the mathematical com-
lexity of the technique, its value lies mainly in the reduction of
yperspectral datasets to determine the spectral wavebands that
re most greatly related to a crop biophysical variable of interest.
ikely, the remote sensing methods used in this study will not be
ractically implemented in a production field setting. Rather the
esults may be used to develop more practical, more inexpensive
adiometers that are specifically tailored to estimate a particular
rop trait, such as lesquerella flower count. The remote sensing
ethods implemented in this study have wide potential applicabil-

ty to other crop species and other crop canopy traits. The methods
ay also be applied to improve remote sensing technologies in sev-

ral application areas, including precision crop management and
igh-throughput phenotyping efforts. Perhaps the most important
onsideration is that the methods are used to more clearly under-

tand the mechanism for reflectance of light from crop canopies
nd why it is possible to estimate some canopy traits from spectral
easurements. This approach is more preferable than the alterna-

ive one that simply seeks high statistical correlation between crop
anopy traits and spectral reflectance.
nt using the transect reflectance data collected from February to July of 2009.
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